An Improved Local Wellposedness Result for the Modified Kdv-equation

نویسنده

  • AXEL GRÜNROCK
چکیده

The Cauchy problem for the modified KdV-equation ut + uxxx = (u 3)x, u(0) = u0 is shown to be locally wellposed for data u0 in the space Ĥr s (R) defined by the norm ‖u0‖ Ĥr s := ‖〈ξ〉sû0‖Lr′ ξ , provided 4 3 < r ≤ 2, s ≥ 1 2 − 1 2r . For r = 2 this coincides with the best possible result on the H-scale due to Kenig, Ponce and Vega. The proof uses an appropriate variant of the Fourier restriction norm method and linear as well as bilinear estimates for the solutions of the Airy-equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

KdV and Almost Conservation Laws

In this article we illustrate a new method to extend local wellposedness results for dispersive equations to global ones. The main ingredient of this method is the definition of a family of what we call almost conservation laws. In particular we analyze the Korteweg-de Vries initial value problem and we illustrate in general terms how the “algorithm” that we use to formally generate almost cons...

متن کامل

On the Dual Petrov-galerkin Formulation of the Kdv Equation in a Finite Interval

An abstract functional framework is developed for the dual Petrov-Galerkin formulation of the initial boundary value problems with a third-order spatial derivative. This framework is then applied to study the wellposedness and decay properties of Airy equation and KdV equation in a finite interval.

متن کامل

On the Dual Petrov-galerkin Formulation of the Kdv Equation on a Finite Interval

An abstract functional framework is developed for the dual Petrov-Galerkin formulation of the initial-boundary-value problems with a third-order spatial derivative. This framework is then applied to study the wellposedness and decay properties of the KdV equation in a finite interval.

متن کامل

Sharp Global Well - Posedness for Kdv and Modified Kdv On

The initial value problems for the Korteweg-de Vries (KdV) and modified KdV (mKdV) equations under periodic and decaying boundary conditions are considered. These initial value problems are shown to be globally well-posed in all L 2-based Sobolev spaces H s where local well-posedness is presently known, apart from the H 1 4 (R) endpoint for mKdV. The result for KdV relies on a new method for co...

متن کامل

LOCAL WELL-POSEDNESS FOR THE MODIFIED KDV EQUATION IN ALMOST CRITICAL Ĥr

We study the Cauchy problem for the modified KdV equation ut + uxxx + (u )x = 0, u(0) = u0 for data u0 in the space Ĥr s defined by the norm ‖u0‖Ĥr s := ‖〈ξ〉 sû0‖Lr′ ξ . Local well-posedness of this problem is established in the parameter range 2 ≥ r > 1, s ≥ 1 2 − 1 2r , so the case (s, r) = (0, 1), which is critical in view of scaling considerations, is almost reached. To show this result, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008